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Abstraet--A higher-order shell theory is developed for elastodynamic analysis of orthotropic shells. 
The theory accounts for all basic deformations including transverse shear and transverse normal 
strains and stresses. The theory is developed in orthogonal curvilinear coordinates in which the 
reference surface components of the displacement vector vary linearly through the thickness while 
the transverse displacement is parabolic. Transverse shear and transverse normal strains are for- 
mulated to satisfy physical traction conditions at the top and bottom shell surfaces, and are also 
made least-squares compatible with the corresponding strains that are derived directly from the 
strain-displacement relations of three-dimensional elasticity. In these variational statements of strain 
compatibility, transverse shear and transverse normal correction factors are introduced, and are 
determined from dynamic considerations in the manner originally proposed by Mindlin. Equations 
of motion and associated engineering (Poisson) boundary conditions are derived from a three- 
dimensional variational principle. An important feature of the present theory is the requirement of 
only simple C o and C- ~ continuity for the shell kinematic variables. This aspect makes the theory 
particularly attractive for the development of efficient shell finite elements suitable for general 
purpose finite element analysis of thick shell structures. Analytical solutions for the free vibration 
of isotropic and orthotropic cylindrical shells are obtained for a wide range of thickness/radius and 
thickness/wavelength ratios and found to be in close agreement with the exact elasticity solutions. 
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surface metrics (Lam6 parameters) 
shell membrane rigidities 
shell membrane-bending coupling rigidities 
elastic stiffness coefficients 
shell bending rigidities 
shell transverse shear rigidities 
the class of continuous functions possessing discontinuous derivatives at element inter- 
faces 
the class of continuous functions that are discontinuous at element interfaces 
inertial coefficients 
axial half wavelength 
stiffness matrix of cylindrical shell 
mass matrix of cylindrical shell 
cylindrical shell radius 
shell thickness 
transverse shear correction factors 
transverse normal correction factors 
axial and circumferential wave numbers 
midplane displacement along ~ and ~2 directions 
orthogonal displacement components 
components of the transverse displacement 
cylindrical coordinates 
time variable 
normalized frequency 
variational operator 
strain and curvature components 
bending cross-sectional rotations 
dimensionless thickness coordinate 
stress components 
mrt/L 
orthogonal curvilinear coordinates 
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material mass density 
circular frequency 
differentiation with respect to time 
partial differentiation with respect to ~ 

1. I N T R O D U C T I O N  

Thick-section composite laminates have found numerous structural applications in the 
areas of civil, aerospace and marine structural designs. Many of these structures can be 
classified as thick shells--the shells in which the thickness dimension is the same order of 
magnitude as the radii of curvature. Given these dimensional relations and, additionally, 
the consideration of the polymer-matrix graphite-fiber material constituents, such shells 
may exhibit significant transverse shear deformations effects. In addition, transverse normal 
deformations need also be accounted, especially in the areas of stress concentration and 
those regions where the span of loading is comparable to the thickness dimension. These 
transverse effects are known to be pronounced in high-frequency, short-wavelength 
dynamics. 

Considering the fact that a vast majority of structural analysis today is performed with 
the use of general-purpose finite element codes, it becomes rather apparent that there is a 
need for a simple and accurate higher-order shell theory that is amenable to finite element 
approximations. Such a theory must take proper account of transverse shear and transverse 
normal deformations--the type of thickness deformations that can be significant in the 
response of thick shell structures to low-velocity impact and, in dynamics, high-frequency 
excitations. 

The classical two-dimensional theories [e.g. see Love (1888); Naghdi (1956); Sanders 
(1959) ; Koiter (1960) ; Ambartsumyan (1964) ; Reissner and Stavsky (1961) ; Dong et al. 

(1962)] are governed by the Kirchhoff Love assumption of negligible transverse shear and 
transverse normal deformations. They are known to provide adequate predictions of all 
response quantities in the elastostatic regime of thin shells ; in elastodynamics, in addition 
to the thinness requirement, the practical range of applicability of the classical theory is 
restricted to low-frequency (long-wavelength) excitations. When applied to relatively thick 
shells and those subjected to high-frequency excitation, however, significant errors may 
result. This is generally true for homogeneous isotropic materials, and especially true for 
laminated composites which exhibit relatively weak stiffness properties in the direction 
transverse to the fiber orientation. In the latter circumstances, rather significant defor- 
mations may result in the transverse shear and normal directions, and the neglect of these 
effects in the approximate theory may no longer be appropriate. 

The first-order shear deformation theories account for transverse shear deformation, 
yet they neglect the effect of transverse normal deformation [e.g. see Reissner (1944, 1945, 
1985); Mindlin (1951); Dong and Tso (1972); Dong and Chun (1992); Reddy (1989); 
Khdeir et al. (1989)]. These two-dimensional theories have been used widely in the analysis 
of both homogeneous and composite shells because their applicability extends further into 
the moderately thick regime and higher-frequency dynamics. They also proved to be 
particularly useful in the realm of finite element approximations (Hughes, 1987). The major 
stimulus here is the requirement of lower-order continuity for the displacement variables. 
For these reasons, first-order shear deformation theories are employed almost exclusively 
in general-purpose commercial and research finite element codes. 

Various higher-order theories have been proposed for the analysis of thick homo- 
geneous and laminated shells. The majority of such theories provide higher-order dis- 
placement approximations to improve the inplane response and stress predictions, yet they 
neglect the effect of transverse normal deformations [see e.g. Reddy and Liu (1985); 
Whitney and Sun (1974); Di Sciuva (1987); Doxsee (1989)]. Other higher-order theories 
include the transverse normal effect but are penalized with a higher degree of complexity 
such as higher-order boundary conditions, a large number of equations of motion (equi- 
librium), and higher-order continuity requirements for finite element approximations [see 
e.g. Hildebrand et al. (1949) ; Naghdi (1957) ; Lo et al. (1977) ; Voyiadjis and Shi (1991)]. 
For these reasons, higher-order theories have been employed to a much lesser degree and 
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Fig. 1. Differential shell element. 

have not found their way in general-purpose finite element programs. Only in certain 
relatively simple cases have three-dimensional elasticity solutions been successfully obtained 
[e.g. Nelson et al. (1971) ; Armenakas et al. (1969) ; Mirsky (1964, 1966)]. 

The main focus of  this effort is to derive an accurate general shell theory which is 
particularly suited for finite element analysis and is applicable for the elastodynamics of  
thin and thick orthotropic shells. The approach is an extension of the {1, 2}-order plate 
theory of  Tessler (199l, 1993) which accounts for transverse shear and transverse normal 
deformations, has a wide applicability range, possesses the simplicity of  the first-order shear 
deformation theory, and is ideally suited for general-purpose finite element analysis. The 
present shell formulation may also serve as a foundation for a laminated composite theory 
following recent developments in plate theory [refer to Tessler and Saether (1991) ; Tessler 
et al. (1992, 1995)]. 

The proposed theory is evaluated via an analytic solution for the free vibration of  
isotropic and orthotropic cylindrical shells. Natural frequencies of vibration are determined 
for a wide range of geometric parameters, and the results are compared with the cor-  
responding three-dimensional elasticity solutions. 

2. FOUNDATION OF {1, 2}-ORDER SHELL THEORY 

Let (~,  ~2, () denote an orthogonal curvilinear coordinate system of  the shell of  
thickness 2h, where ~ and ~2 are the parametric, orthogonal lines of  principal curvature of  
the shell reference midsurface, and (~  [ - h ,  hi is the normal to the midsurface which is 
positioned at ( = 0. The principal radii of curvature of the reference surface are R~ and R2 

(see Fig. 1). Also, let A~ and A2 denote the surface metrics of the shell element which are 
determined as 

A~ = r ,  " r , ,  A 2 = r2 "r2, (1) 

where r is the position vector of  a point on the middle surface of the shell ; hence, A~ = At (~,  
a2) and A2 = A2(a~, a2)- To make the development meaningful for application to composite 
materials, the theory is carried out for an elastic, orthotropic material. It is further assumed 
that the deformations of  the shell are small. 
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The displacement vector defined in the orthogonal curvilinear shell coordinate frame 
can be written as 

U ( ~ , ,  ~2, ~, t) = u~ (~ , ,  ~2, (,  t)i, + u~(~ , ,  ~2, ( ,  t)i~ + u3(~ , ,  ~2, (,  t)n, (2) 

where i~, i 2 and n are the unit vectors along ~ ,  ~2, and (, respectively. 
Following the approach of a {1, 2}-order plate theory of Tessler (1991, 1993), the 

displacement components,  which allow a three-dimensional deformation state including 
transverse shear and transverse normal deformations, are expanded in terms of  the dimen- 
sionless thickness coordinate ~ = ( / h e [ - l ,  1] using seven kinematic variables, 
u = (u, v, w, 01, 02, wl,  w2), as 

Ul (a l ,  a2, ~, t) = u(~ l ,  ~2, t) +h~O, (or,, ~2, t) 

u2(otl, ~2, ~, t) = v(otl, ~ ,  t) + h ~ 0 2 ( ~ ,  ~2, t) 

u3 (cq, ~2, ~, t) = w(~,, ~2, t ) +  ~Wl (~,, ~2, t) + (~2 + C)w2 (~1, c~2, t), (3) 

where t denotes time ; C is a constant whose value is established by letting w be the weighted- 
average transverse deflection as in Reissner's first-order theory, i.e. 

,f w = u3(l - ~2) d~. 
h 

(4) 

The fulfilment of  this condition requires that C = - 1/5 (also, see Remark 1). As a result, 
the transverse displacement computed at the shell midsurface is defined by two dependent 
variables, i.e. 

u3(e,, c~2, ~ = 0, t) = w(~,, c%, t) + Cw2 (cq, c%, t). (5) 

As in the first-order theory, the variables u, v, 0~, and 02 can be interpreted as the weighted- 
average quantities, 

lI" 3_i" (u,v)=~j_h(U,,uz)d~, (0,,02)=2h 3J_h(u,,u2)~d~. (6) 

The higher-order variables, wt and w2, can be thought of  as the normalized strain and 
curvature in the thickness direction, i.e. 

o w2/h 2 , o w , /h  = u3z(( = 0) = G, = 5u3.~; = ~,. (7) 

The three-dimensional Hooke ' s  law is assumed to govern the relationship between stresses 
and strains, which in matrix form may be written as 

r 

O" l 

0" 2 

O" n 

T2n 

T l n  

T I 2  

CII CI2 CI3 0 0 C16 
CI 2 C22 C23 0 0 C26 
C13 C23 C33 0 0 C36 

0 0 0 C44 C45 0 
0 0 0 C45 C55 0 

C16 C26 C36 0 0 C66 

~2 

k~ n 

22n 

2In 

(8) 

where the C~i denote the elastic stiffness coefficients for an orthotropic material whose 
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principal directions are not, in general, coincident with the shell coordinates ~, and ~2, 
hence the presence of  the shear coupling terms, G6 (i = 1, 2, 3) and C45. 

The conventional computation of  strains proceeds by introducing the assumed dis- 
placements into the strain-displacement relations of  three-dimensional elasticity theory [e.g. 
see Kraus (1967)]. This gives rise to the following strain components. 

The strains acting in the ~, and ~2 coordinate directions, 

~, = [ao + h~co + h~aO/R, + h  z (¢2 + C)~cO/R,]/L, ( i  = 1, 2 )  

~,~ = (~0 + h¢#',) /L,  + (~o + h¢#'2)/L2, (9) 

where L~ = 1 + h¢/Ri  (i = 1,2) and 

e ° = u,t/A~ + v A 1 . 2 / A t A 2  + w / R j  

e ° = v 2 / A 2 + u A 2 : / A I A 2 + w / R 2  

flo = v : / A ,  - - u A , . z / A , A 2  

flo = u 2 / A 2 - - v A 2 . ~ / A , A 2  

~c ° = Oi. j /Ai  + O z A , , 2 / A , A 2  

~0 = O2.2/Az + O I A 2 : / A I A 2  

fl'l = 02diAl -O1Al ,2 /A tX2  

fl'2 = O , . 2 / A z - O 2 A z : / A I A 2 .  (10) 

The transverse shear, 7~.(i = 1,2), and transverse normal, e., strains, 

1 
~io = - -  [A ,~ ,  ° + ~w,., + (~2 + C ) w 2 . , ] ,  (1 l )  

LiAi  

where 

I ~° = - - u / R i  +01 +w:/Ai 

II ° = -- v/R2 + 02 + w z/A2 

and 

0 0 e. = e. +2~hx. .  (12) 

Examining the distribution of  the transverse shear strains in the thickness direction, as the 
shell approaches its thin limit 2h ~ 0, reveals the fulfillment of  the limiting conditions Li 
1 and W/.~ << #i. Under these constraints, the shear strains are practically uniform across the 

shell thickness, i.e. 7i, -*/to. Hence, the conditions of  zero shear stresses on the bounding 
shell faces cannot be achieved with these displacement assumptions. Further, associated 
with each shear strain, a correction factor needs to be specified to achieve agreement with 
the classical theory for the class of  thin shell problems. This latter aspect is consistent with 
the shear correction notion in the first-order plate theory, Mindlin (1951). Also, as observed 
by Mindlin and Medick (1958) in the context of  inplane plate vibrations, the thickness- 
motion response, which is characterized by the linear thickness variation of  the transverse 
normal strain, e,, needs to be corrected. This is due to the sinusoidal character of  the exact 
e, distribution which cannot be modeled with sufficient accuracy by the linear variation even 
for the lowest thickness-stretch mode. Here, two correction factors need to be specified--one 
associated with the constant and the other with the linear components in e,. The values of  
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these corrections factors in the context of a { 1,2}-order plate theory have been determined 
by Tessler et  al. (1995), who employed the approaches of Mindlin (1951) and Mindlin and 
Medick (1958). 

Rewriting eqns (11) and (12) with the use of transverse shear k~ (i = 1,2) and normal 
ks (i = 3,4) correction factors results in the corrected transverse strains, 

ki 0 ~,,,, = ~ [A~u, + ~w,,, + ( ~  + C)w~,,] 

8n = k3 8 0 q- k4 (2~ht¢ °). 

(13) 

(14) 

Once the strains are derived from the displacements in the manner described, the 
conventional displacement approach for elastodynamics is to employ Hamilton's principle. 
For  this order of displacement approximation, Hamilton's principle gives rise to a set of 
seven second-order partial differential equations of motion and a set of variationally 
consistent boundary conditions. Such a theory is formally 14th-order, as are those derived 
in Hildebrand et  al. (1949) and Naghdi (1957), and possesses higher-order boundary 
conditions associated with the w~ and w2 variables. Also, with the transverse shear strains 
defined by eqn (13), the associate shear stresses cannot fulfill zero shear traction conditions 
on the bounding shell surfaces. From the perspective of utilization of such a theory in a 
general-purpose finite element code, the large number of variables and the appearance of 
higher-order boundary conditions make it incompatible with the conventional, first-order 
theory framework, involving three displacement and two rotation variables. This explains 
the complete absence of higher-order theory shell elements in general-purpose finite element 
codes. 

The aforementioned deficiencies, however, can be overcome by formulating the shell 
approximation in a multi-field manner, where in addition to the displacements, the trans- 
verse strains are also assumed independently. The manner in which this process is presently 
formulated will yield a simplified and accurate shell theory that also fulfills the needs 
of computational mechanics; that is a theory that is perfectly suited for finite element 
approximation (also, see Remarks 2). In what follows, this approximation approach is 
described. 

We now propose an independent approximation of transverse shear strains of the 
following form 

1 2 
= ~07i~j(c~,c~2,t)~J ( i =  1,2), (15) 7~* (ctj, ~2, ~, t) AgL~j = 

where V~nj are yet unknown coefficients dependent on cq, c~2 and t. Henceforth, the strains 
superscribed with the asterisk will represent the independently assumed strains to distinguish 
them from those derived directly from strain-displacement relations. The above assumptions 
allow the selection of  the Vi,j strain coefficients in such a way as to satisfy exactly the zero 
shear equilibrium conditions on the top and bottom shell surfaces, i.e. 

%(cq,e2, +_h,t)  = 0 ( i =  1,2), (16) 

where Hooke's  law, eqn (8), is used to obtain zi. in terms of 7". The two homogeneous 
conditions for each shear stress determine two unknown coefficients for each shear strain 
in eqn (15). The remaining coefficient in each assumed strain is determined from the 
following variational statement in which 7*, subject to the physical constraints, eqn (16), 
are made compatible across the shell thickness with the corresponding cor rec t ed  shear 
strains, eqn (13) ; this compatibility is enforced in the least-squares sense as, 
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minimize 7g*- -T~[Ai#~+~w~, ,+(~2+C)w2 . i ]  A~L]d~  ( i = 1 , 2 ) ,  (17) 
- h  

where the integrals are minimized with respect to the unknown expansion coefficients. The 
resulting transverse shear strains take the simple form 

5ki 2 o 
7i* = ~ - ( 1 - - ~  )It , /L, ( i =  1,2). (18) 

Note that the 7* strains are now defined exclusively in terms of the basic strain measures 
#o and they possess no Wl and w2 contributions ; this is contrasted with those shear strains 
which are conventionally derived from the strain-displacement relations (11) and (13). 
The analytic and computational benefits of the transverse strains just derived are further 
elucidated in Remark 3. 

Similarly, an improved approximation for the transverse normal strain is introduced 
by assuming a cubic thickness distribution as 

3 
~*,(~1, ~2, ~, t) = ~ e,i(~,, ~2, t)~/" (19) 

j = 0  

Alternatively, a cubic o-, could have been assumed--the two approaches being entirely 
equivalent for a homogeneous shell. The latter approach, however, has some advantages 
when laminated composite materials are considered (Tessler, 1993) ; whereas, the implemen- 
tation of the former is somewhat more direct and simple. 

To determine the unknown coefficients of the ~,, expansion, a homogeneous constraint 
condition is imposed on the transverse normal stress gradient as 

G,~(~,, ~2, _+h, t) = 0. (20) 

This condition is an exact statement of transverse normal equilibrium for plates, i.e. 
when the initial curvatures are zero (Tessler, 1993), and it can only be regarded as an 
approximation for curved shells [e.g. refer to Sokolnikoff (1956) for the exact form of 
equilibrium equations in curvilinear coordinates]. It can further be argued that for shallow 
shells this approximation may still be adequate both as an average representation of the 
thickness stretch deformation as well as for computing the a, stress. For deep shells, 
however, the computation of a, directly from Hooke's law is not expected to be accurate. 
In these situations, G may be obtained by integrating the exact equilibrium equations of 
three-dimensional elasticity theory--the procedure commonly used in recovering a, from 
classical and first-order theories. It is now worth pointing out that, as will be established in 
Results and Discussion, the theory produces accurate predictions of vibrational frequencies 
even for deep and very thick cylindrical shells. Since the accuracy of vibrational frequencies 
depends on how well the shell response is approximated in the average sense, it is reasonable 
to conclude that the enforcement of eqn (20) results in an adequate approximation of the 
thickness stretch deformation even for deep shells. 

The remaining expansion coefficients in eqn (19) are determined by forcing e* to be 
least-squares compatible with the corrected e, strain of eqn (14), 

minimize ; h {~*- [k3 ~:n° q- k4 (2~ht¢ °)] }2 d(. (21) 

This yields 
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8,*~ sls°.q.-s28°-}-k3s3~,°--[-s4fl°l q-S5fl°q-s6 KO 0 0 , = . . " t - S 7 K 2  q-kassK,  q-s9fl] " J - S I 0 / ~ 2 ,  (22) 

where the S/(J = 1,2 . . . . .  10) coefficients vary cubically with ~ and are also functions of the 
C~j elastic constants (see Appendix A). 

The complete kinematics of the shell can thus be expressed in terms of 12 reference- 
surface shell strain and curvature measures, 

T [ e o ,  o o 0 0 T [ ~ o ,  o 0 , , 
~o = ~ 2 , ~ , , , / ~ , , / L q ,  ~ o  = = , ~C.,X.,/~,.//2I, Y J [#0 /~o], (23) 

where 0 o o (e~, e2, en), (flo, fl0) and (/~, #o) represent the normal, reference-surface shear and 
transverse shear strains; (~c °, ~o, ~co) and (fl], fl~) denote the changes in the normal and 
twisting curvatures. The relationships of these quantities to the seven kinematic variables 
are given in eqns (7), (10) and (l 1). 

Accounting for all strain and stress components and assuming no body forces, the 
equations of motion together with the natural boundary conditions are now derived by 
applying the three-dimensional variational principle, 

I i ' a (ate1 +a2e2 + a,,e,*+ Zl,)'t 2 * ~ * 
0 i 2 h 

L L  ,.u2+02 
L , ~ t  1 _ + u ~ ) A , A 2 L , L 2 d c q d e 2 d ~  

--  (q.  U3 El  L2 - q / , u ~ L ~ L 2 ) A 1 A 2  dc~l dc~2 
I 2 

-- (el ul + f l 2u2 + f l,,u3)A2L2 de2 d~ 
2 I1 

f'; ] -- (f21ul + e 2 u 2 + f 2 , , u 3 ) A i L i d e l d ~  d t = O ,  
I h 

(24) 

where the quantities superscribed with a bar refer to the prescribed edge values, and the 
superscripts " + "  and " - "  respectively identify the appropriate quantities on the top and 
the bottom shell surfaces; q+ and q,, are the normal tractions prescribed on the top and 
bottom bounding shell surfaces. Note that the first volume integral in eqn (24), which 
represents the strain energy in Hamilton's principle, has features of a mixed formulat ion--  
the mixed aspect is due to the inclusion of  the independently assumed transverse strains. 
Unlike Reissner-type mixed formulations in which the assumed strains/stresses depend on 
the respective strain or stress functions, the assumed strains in the present formulation are 
functions of the displacement variables. 

Integrating over the shell thickness results in the two-dimensional variational principle, 

I{lf  t 6 ~ [ N T ~ o + M T K o + Q T y o ] d ~ I  d ~ z - K - - W  e dt = O, 
o 

(25) 

where the vectors of stress resultants N, M and Q are given by 

N T = [ N I , N 2 , N n , N 1 2 , N 2 1 ]  

M v = [Mi ,  m2,  M . ,  ML2, m21] 

QT = [Qg,QI] (26) 
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The stress resultants, expressed as integrated quantities of the stresses, are given in 
Appendix B. 
The kinetic energy, K, and the external work, We, have the form 

K =  ~ , 2 [m°(ft2 +t)2 + cv2)+ 2hmt(ftO' +bO2)+h2m2(021+O2) 

+m2 ~2 + (m. -- 2m2/5 +mo/25)W2 z 

+2ml ww~ +2(m2 --mo/5)w~2 

+2(m3 --ml/5)~, fi'2]d,d2 d~, d~z (27) 

W~=f~ f~ [q,(w+4w2/5)+q2w,]A,A2dct, dot2+[ (]q,u+]q,2v+hTI, Ol+Ml202 
1 2 ~l°tl 

+Q_I w+Q,,  w, +Q,2WE)A2 dot2 

-~f~ (N21U'~-~TZU' - [ - /~2101  "{ - /~202  
2 

+Q2w+Q2,w, +O22w2)A, dot,, (28) 

where 

+ + + q~ = q.+L~-L~-q2LTLf,  q2 = q. LI L2 +qyL~L~,  (29) 

The resultants of prescribed edge tractions (57~,)Q,j, Qo) and the mi (i = 0, 1 . . . . .  4) inertial 
coefficients are defined respectively in Appendices C and E. 

The shell constitutive relations are expressed as 

I": T" = D o[ ]Ko(, 
o GJt% ) 

(30) 

where A = [A0. ], B = [B0. ], D = [Do. ] and G = [G,j] are defined in Appendix D. 
Performing appropriate variations and integration by parts yields the seven equations 

of motion, 

(N, AE)., +(N2,A,).2+ N,2AI.E-NzA2.1 + A,A2Q,/R,  = A,A2(mofi+m,hO,) 

(NI2A2)., q- (N2A,).z + N2,A:., -N ,A , .2  +.4, A2Q:/R2 = A,A2(mob'+m,h02) 

(Q,A2)., + (Q2A,) .z - (N, /R,  + NE/R2)AIAz--q.AiA2 

= AiA2[moCO+m,¢01 +(-mo/5+m2)¢92] 

(M~A2)., +(M21A~).2 + M~2A~.2-MzA2.1-A~A2Q~ = A~A:(m~hii+m2hZO~) 

(M,2A2).~ + (M2A,).2 + M2,A2., -- M,A, . : - -  A,A2Qz = A,Az(m,hi/+mzh:O:) 

-- N./h + qz = [m, ¢9+m2¢0, + (--m,/5 + m3)¢02] 

- M . / h  z +4q, /5  -- [( -mo/5+ma)~+(-m, /5+m3)f fh  +(mo/25-2mz/5+m.)COz] 
(31) 

and the Poisson-type boundary conditions that are consistent with the theory. The boundary 
conditions along the ~, edge : 
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N2~ =-N2] or u = 

N2 = ~72 or v = 

Q2 = Q2 or w = 

M21 = /~2t or 0~ = 0, 

M2 =A~t2 or 02 =02.  (32) 

The boundary conditions along the 0~ 2 edge 

N1 ~--/Wl 

Nj2 = -~712 

Q, = ~,  

M12 = )~12 

ml = M'I 

o r  u = u  

or v = O  

o r  w =  

or 01 = 0, 

or 02 ~ 0 2 (33) 

The variational principle also yields 

Q21 = Q22 = 0 along ~1 

Q [ ] = Q j 2 = 0  along a2 (33a) 

To satisfy conditions (33a), the gl, and ~2, shear tractions must be of the following form 

g l .  = 3~1. (~2) (1  - ~2)/L2 

g2.  = ~ r 2 . ( ~ 1 ) ( 1 - ¢ 2 ) / L 1  (34) 

Remark 1. Alternative procedure for determinin9 the C coefficient 
The C coefficient appearing in the assumed displacement (3) can be alternatively 

determined from the least-squares statement (17) without the preceding enforcement of (4). 
Thus, the fulfillment of condition (17) with C treated as an unknown constant, results in 
the transverse shear strains which include terms associated with the gradients w2,i (i = 1,2). 
In these expressions, if C is set to - 1/5, the w2,i terms vanish identically, yielding the shear 
strains of eqn (18). 

Remark 2. Finite element approximation aspects 
The theory offers significant computational advantages as far as its finite element 

approximation is concerned. The basic issue is the interelement continuity requirement for 
kinematic variables associated with the theory. Here, the u, v, w, 01 and 02 kinematic 
variables, which are the same as in the first-order theory, need only be approximated with 
C°-continuous shape functions; this is because their highest spatial derivatives appearing 
in the variational principle (25) do not exceed order one. Further, since the variational 
principle possesses no spatial gradients of the variables wl and w2, their finite element 
approximations need only be C-l-continuous, i.e. these fields can be discontinuous along 
finite element boundaries. With the latter assumptions, the w~ and w2 variables can be 
condensed out statically at the element level, thus giving rise to simple and computationally 
efficient elements. Such finite elements, based on the predecessor { 1,2}-order plate theory, 
have been developed and successfully implemented in NASA's general-purpose finite 
element code COMET (Stewart, 1989), and used as a user-supplied element in ABAQUS 
(Hibbit et al., 1992). 

Remark 3. Analytic simplicity characteristics 
The absence of the wl.i and w2.i gradients in the transverse shear strains and, 

subsequently, in the variational principle, results in the following simplifying features of 
the theory : (1) the resulting differential equations of motion are 10th order and not the 
usual 14th order for a seven-variable theory [e.g. Hildebrand et al. (1949), Naghdi (1957)] ; 
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and (2) the variationally derived boundary conditions are strictly of the Poisson type, 
without the usual higher-order boundary conditions that are necessarily present in a 14th- 
order theory. 

3. TRANSVERSE CORRECTION FACTORS 

The shell theory is completed upon determining the appropriate values for the cor- 
rection factors k~ (i = 1,4) introduced in the formulation. The approach is the same as in 
the predecessor plate theory (Tessler et  al., 1995) ; it follows Mindlin's approach (Mindlin, 
1951), by considering the free vibration of an infinite orthotropic plate. First, cut-off 
frequencies of the lowest thickness-shear modes computed from three-dimensional elasticity_ 
equations of motion and the present theory are matched, resulting in k~ = k: = n / x / l O  
(0.993). This value--which is nearly unity--implies an insignificant correction in shear and 
differs from that of Mindlin's first-order theory correction of rr /x/~ (0.907). Analogously, 
as in Mindlin and Medick (1958), cut-off frequencies for the lowest symmetric and anti- 
symmetric thickness-stretch modes obtained from three-dimensional elasticity theory and 
the present theory are matched, resulting in the values k 3 = ~ / x / ~  (0.907) and 
k4 = t r / ~  (0.816). These correction factors will subsequently be used in the analysis 
of general shells. 

4. FREE VIBRATION OF CYLINDRICAL SHELLS 

The present shell theory is evaluated by studying the free vibrations of isotropic and 
orthotropic homogeneous cylindrical shells. For a cylindrical shell of radius a, the equations 
of motion in terms of the displacement variables are obtained from eqn (31) by making use 
of the shell constitutive relations (30) and, subsequently, transforming the general curvi- 
linear coordinates (cq, ~2, ~) to the circular cylindrical coordinates (x, 0, (), and by taking 
into account the appropriate geometric relations 

A, =R~ = ~ ,  A2 = R 2 = a ,  lim (R, d0t , )=dx.  (35) 
RI~OO 

The seven equations of motion take the form 

A j I u,xx + A s 5 U,oo/a ~ + (A 12 + A 5 4)U,xo/a + B i, 0o:., + 

B5 5 0o.oo/a 2 + ( Bl z + B5 4)Ox.xO/a + A 12 w : /  a + A ~ 3 w l,x/h + B I 3 wz .x/h 2 = m o  fi + m lhOo 

(B54 "-]- n l 2 ) U,xo/a + n 44 V,xx + B22 V,oo/a 2 ..]_ (D45 + D z ~ ) Oo.xo/a + 

D44 0 ...... "1- D22 O~,oo/a z + (B22 -- aa44)  w o/a 2 q- B32 wl,o/ha + 

Dz 3 w2.0/h 2 a + G44 (v - aOx)/a = h(m~ f: + m20x) 

G55 W xx + G44 W.oo/a 2 -- A 2~ u s a -  (A22 + G44)V,o/a 2 - 

(Bz I -- aG55) O0.x/a - (B22 - aG44)Ox.o/a2 - A 22 w~ a2 - A 23 w | /ah  

- B z 3 w 2 / a h  2 = moC~+m~ ¢0~ + ( - m o / 5 + m : ) ~ 2 ]  

(A45 + A z~ )U:o/a + A44v.xx + .422 V.oo/a 2 + (B45 + B2,)Oo.xo/a + 

B440 ........ -1- B2zOx.ooa 2 + ( A2z + G44)W.o/a z -k- A23 Wl.o/ha + 

Bz3 W2.o/hZ a -  G44 (v -- aOx) /a 2 = moi: + mr hOx 

B l i u.xx + B55 U.oo/a 2 + (B21 + B45)vxo/a + D I I Oo.xx + 

D550o.oo/a2 -1- (Dr z q- D54)Ox,xo/a-+- (B21 - aG55) w x/a + 
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9 3 1 W I . x / h  n t- D l 3 w2.x/h 2 -- Gs 50o = h (ml fi + hm ~ 0o) 

-[A31u:.:-b A32(V.o+ w ) / a +  A33wl /h-b  B3,0~.,.-b B320,.~/a-k 

B33w2/h2]/h = ml fO + m2fffl + ( - - m t / 5  + m3)l,i:'2 

-- [B 13Ux + B23 (V,o + w ) / a +  B33wI ~h-t-D3100,x + D320,-,o/a-k 

D33w2/h2]/h 2 = ( - rno /5+rn2)¢O+ ( - r n j / 5 + m 3 ) f f  h + ( m o / 2 5 - - 2 m 2 / 5 + r n 4 ) ~ ' 2 .  (36) 

F o r  free vibrat ion,  the displacements  are expanded  in a moda l  infinite series as 

u(x,  O, t) = 
m = n =  

v(x,  O, t) = 
m : tl = 

w(x,  O, t) = 
m : t l  = 

O,.(x,  O, t) = 
m = st = 

Oo(x, O, t) = 
m ~ n =  

w, (x, O, t) = 
m ~ ii = 

w2 (x, O, t) = 
m ~ n = 

U.m sin ax  cos nO e i%,,,/ 

g.., cos ~x sin nO e i'''''t 

i¢ ) t IV,,., COS 0¢X COS rt0 e 

q~,,n cos ax  sin nO e i%''t 

qJ.,. sin c~x cos nO e i',,,,.' 

W.~,. cos ~x cos nO e i%,,,,t 

W~,,, cos ~x cos nO e i'',,,,,~ (37) 

Fo r  the special case n = 0, the d isplacement  expansions  are obta ined by interchanging sin 
nO and cos nO in eqn (37). Substi tut ing eqn (37) into eqn (36), results in the matr ix  eigenvalue 
equa t ion  

(Key / -- oJZMcyl)A = 0, (38) 

with 

A T  { U m n ,  W r e n ,  W m n , ~  . . . .  ~ . . . .  l 9 = w ..... w ; , , , } ,  

where the coefficients o f  the stiffness Kcy I and mass  Mcy I matrices  are defined in 
Appendix  E. 

The  equat ions  o f  mo t ion  (36) and  the resulting eigenvalue equat ions  (38) (also refer 
to Appendix  E) show tha t  de format ions  th rough  the thickness due to w~ and w2 couple 
with the stretching and bending shell deformat ions .  This coupl ing is expected to be more  
p ronounced  in thick shells, and it is less significant in thin shells. Also, o f  par t icular  interest 
is the fact that  the first five equat ions  of  mo t ion  reduce to those o f  the first-order Mindlin-  
type theory  once the coupl ing terms associated with the w~ and w2 variables (i.e. the Ki6 

and/(,.7 (i = 1,2 . . . . .  5) stiffness and  the M3j (j = 6,7) mass  terms, see Appendix  E) are set 
to vanish. In addit ion,  these " r educed"  equat ions  yield results consistent  with the classical 
shell theory once the t ransverse shear rigidities Gij ( i , j  = 4,5) are set to infinity. 
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Table 1. Normalized natural frequencies for homogeneous  isotropic thin cylinders, 2h/a = 0.01 

2h/L fit f2 f~3 ~4 
EXACT HOT  EXACT HOT EXACT HOT EXACT HOT 

( m , n ) = ( 1 ,  1) 
0,01 0.0046 0.0046 0.01069 0.01069 1.0001 1.0002 1.8706 1.8708 
0.10 0.0160 0.0159 0.1001 0.1001 1.0050 1.0050 1.8498 1.8726 
0.20 0.0577 0.0577 0.2000 0.2000 1.0198 1.0198 1.8121 1.8779 
0.40 0.1989 0.1986 0.4000 0.4000 1.0771 1.0771 1.7520 1.9020 

(m,n) = (1, 3) 
0.01 0.0026 0.0026 0.0142 0.0142 1.0001 1.0001 1.8709 1.8709 
0,10 0.0160 0.0162 0.1005 0.1005 1.005 1.005 1.8496 1.8726 
0.20 0.0579 0.0584 0.2002 0.2002 1.0199 1.0199 1.8120 1.8779 
0.40 0.1990 0.2003 0.4001 0.4001 1.0771 1.0771 1.7520 1.9021 

Table 2. Normalized natural frequencies for homogeneous  isotropic thick cylinders, 
2h/a=0.3 

2h/L ~ f2 f3 f24 
EXACT HOT EXACT HOT EXACT HOT EXACT HOT 

( m , n ) = ( 1 ,  1) 
0.01 0.0012 0.0012 0.0972 0.0972 1.0083 1.0086 1.8583 1.8730 
0.10 0.0616 0.06t6 0.1648 0.1648 1.0183 1.0185 1.8423 1.8746 
0.20 0.1266 0.1269 0.2375 0.2375 1.0383 1.0382 1.8100 1.8800 
0.40 0.2440 0.2459 0.4142 0.4142 1.0970 1.0967 1.7551 1.9041 

(re, n) = (1, 3) 
0.01 0.0957 0.0957 0.2875 0.2875 1.0455 1.0458 1.7865 1.8858 
0.10 0.1064 0.1065 0.3095 0.3095 1.0517 1.0520 1.7812 1.8877 
0.20 0.1455 0.1457 0.3613 0.3613 1.0692 1.0697 1.7681 1.8938 
0.40 0.2792 0.2801 0.5018 0.5018 1.1303 1.1308 1.7439 1.9208 

5. RESULTS A N D  DISCUSSION 

The free vibrations of isotropic cylinders are studied first. Tables 1 and 2 summarize 
selected natural frequencies for thin (2h/a = 0.01) and thick (2h/a = 0.3) isotropic cylinders 
corresponding to the mode numbers (m,n) = (1, 1) and (m,n) = (1, 3), respectively. In 
these tables, the frequencies are given in the range of thickness/length ratios of 
0.01 ~< 2h/L <~ 0.40, For  each set of  modal numbers (m,n) and the value of 2h/L, four 
frequencies are furnished. The frequencies, f~i = O~i/~Ore~ (i = 1,2,3,4) where 
O9rer = lrx/~p/2h, correspond, in the ascending order, to a flexural mode, associated with 
large radial displacements ; an axial shear mode, associated with large axial displacements ; 
a thickness-shear mode, associated with motions in the axial directions, and a thickness- 
stretch mode exhibiting predominantly radial displacements. The present shell theory results 
are compared with those of  three-dimensional elasticity theory (Armenakas et al., 1969). 
The results for the first three frequencies (~i, i = 1,2,3) are seen to be in excellent agreement 
with the exact solutions for both sets of  modal numbers and the entire range of  2h/L 
examined. The f~4 frequency corresponding to the thickness-stretch mode is predicted 
accurately for thin and long shells ; the shell theory tends to over estimate this frequency as 
the shell becomes thick and/or short. The largest error in the thickness-stretch frequency is 
about 10% corresponding to a short-thick cylinder (2h/L = 0.40 and 2h/a = 0.3) and n = 3. 
Note that in the classical, first-order, and many higher-order theories, the thickness-stretch 
modes are suppressed entirely by virtue of  the inextensibility assumption of the transverse 
normal fiber; hence, the thickness-stretch modes cannot be predicted by means of  such 
formulations. 

The second series of results concerns the axisymmetric vibrations of  orthotropic cylin- 
ders, and these are summarized in Tables 3-5. Solutions are obtained for the aforementioned 
modes f~ (i = 1,2,3,4) corresponding to m = ! and n = 0 (i.e. axisymmetric motion). Thick 
cylinders with the 2h/a ratios of  0.25, 0.5 and !.0 are analysed for a variety of  thickness-to- 
w a v e l e n g t h ~ h ~ )  ratios. The vibration frequencies are normalized as f~ = o9~/~o~er where 
~Orer = 2hx/p/C55. The shell theory predictions are compared with the exact solutions 
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Table 3. Normalized natural frequencies for homogeneous orthotropic topaz 
cylinders (re, n) = (1, 0), 2h/a = 0.25 

2h/L EXACT HOT HOT* FSDT CST 

~ :  Flexuralmode 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
0.01 0.0878 0.0878 0.0878 0.0897 0.8972 
0.1 0.8958 0.8954 0.8957 0.9429 0.9429 
0.2 1.7777 1.7744 1.7774 1.8735 1.8735 
0.3 2.6325 2.6208 2.6352 2.8073 2.8073 
0.4 3.3981 3.3718 3.4296 3.7417 3.7417 
0.5 3.8859 3.8883 4.0645 4.6763 4.6763 

~2: Breathing mode 
0.00 0.3736 0.3736 0.3736 0.4060 0.4060 
0.01 0.3738 0.3739 0.3739 0.4068 0.4068 
0.1 0.3898 0.3902 0.3897 0.4105 0.4121 
0.2 0.6511 0.6471 0.6452 0.6690 0.7266 
0.3 1.1681 1.1187 1.1163 1.1399 1.3733 
0.4 1.7523 1.6786 1.6771 1.6951 2.2078 
0.5 2.8023 2.2731 2.2740 2.2824 3.1426 

~ :  Thickness-shear mode 
0.00 3.1490 3.1498 3.1705 3.1498 - -  
0.01 3.1506 3.1515 3.1722 3.1517 ~- 
0.1 3.3088 3.3110 3.3327 3.3319 - -  
0.2 3.7158 3.7221 3.7480 3.7975 - -  
0.3 4.2538 4.2663 4.3025 4.4232 - -  
0.4 4.8466 4.8721 4.9245 5.1364 - -  
0.5 5.4468 5.4847 5.5777 5.9023 - -  

f14: Thickness-stretch mode 
0.00 4.5864 4.5726 5.0414 
0.01 4.5853 4.5726 5.0415 --  - -  
0.1 4.5383 4.5810 5.0491 - -  - -  
0.2 4.4461 4.6109 5.0752 . . . .  
0.3 4.4027 4.6808 5.1325 
0.4 4.5244 4.8465 5.2575 - 
0.5 4.9799 5.2559 5.5431 . . . .  

specifically formulated for axisymmetric  vibrat ions  of generally or thotropic  cylindrical 

shells (Mirsky, 1964). The exact solut ion is based on a F roben ius  power-series solut ion to 
the governing equat ions  of three-dimensional  elasticity ; it demonstra tes  rapid convergence 
for the very thick case 2h/a = 1. Convergence difficulties are, however, encountered  for the 
low 2h/a and  high 2h/L ratios for which an  asymptot ic  solut ion is developed, Mirsky (1966). 
Both formula t ions  presented by Mirsky (1964, 1966) have been implemented  in this effort 
in order to examine a wider range of shell geometric parameters  and  material  properties 
than  the ones reported in the original references. The mater ial  properties of topaz are used 
herein to compare  with results conta ined  in the original references. The material  modul i  
are given by : 

Cil  = 3 0 0 5  C12 = 9 0 0  Ci3 = 8 6 4  

C22 = 3 5 6 1  C23 = 1284 C33 = 2 8 7 1  

C44 = 1100 C55 = 1357 C66 = 1330. 

In  Tables 3-5, compar isons  are made with solut ions based on the three-dimensional  
elasticity theory (denoted as EXACT) ,  the present higher-order theory with and without  
the appl icat ion of transverse correct ion factors (designated H O T  and HOT*,  respectively), 
the first-order shear deformable  theory (FSDT) ,  and  classical shell theory (CST). It is again 
necessary to po in t  out  that  the predictive capabilit ies of F S D T  and  CST are know n  to be 
adequate  in the range of  low frequencies and small 2h/a ratios. The range of thickness-to- 
radius ratio that  is examined,  2h/a >~ 0.25, falls into the category of thick shells for which 
these two theories are generally not  suitable. The compar i son  with F S D T  and  CST, 
however,  is useful in order  to assertain quant i ta t ively  both  the kind of error that  is incurred 
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Table 4. Normalized natural frequencies for homogeneous orthotropic topaz cylinders 
(m,n) = (1, 0),  2h/a = 0.5 

2h/L E X A C T  H O T  H O T *  F S D T  C S T  

f~,: Flexuralmode 
0.00 0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  
0.01 0 .0879  0 .0879  0 .0879 0 .0899 0 .0899 
0.1 0 .9254  0 .9254  0 .9254  1.0000 1.0001 
0.2 1.7851 1.7828 1.7828 1.8857 1.8857 
0.3 2 .6394  2 .6300  2 .6435 2 .8144  2 .8144  
0.4 3 .4050  3 .3865 3 .4418 3.7468 3 .7468 
0.5 3 .9106 3 .9120 4 .0849  4 .6804  4 .6804  

f12: Breathing mode 
0.00 0 .7635 0 .7638 0 .7638 0 .8187  0 .8187  
0.01 0 .7635  0 .7637 0 .7638 0 .8189  0 .8189  
0.1 0 .7235  0.7241 0 .7236  0 .7349 0 .7349 
0.2 0 .8842  0 .8873 0 .8848 0 .9170  0.9461 
0.3 1.2580 1.2617 1.2582 1.2884 1.4693 
0.4 1.7728 1.7714 1.7686 1.7905 2 .2435 
0.5 2 .3574  2 .3395 2 .3392 2 .3492 3 .1495 

f13: Thickness-shear mode 
0.00 3 .0893# 3 .1748 3 .1957 3 .1748 - -  
0.01 3 .1731# 3 .1766 3 .1975 3 .1768 - -  
0.1 3 .3335 3 .3383 3 .3603 3 .3590 - -  
0.2 3 .7436 3 . 7 5 2 5  3.7791 3 .8269 - -  
0.3 4 .2823# 4 .2985 4 .3357  4 .4528 - -  
0 .4  4 .8768#  4 .9036  4 .9590  5 .1648 - -  
0.5 5 . 4770 t  5 .5196 5.6123 5.9291 - -  

1]4: Thickness-stretchmode 
0.00 4 .6406#  4 .5850  5 .0538 - -  - -  
0.01 4 .6400# 4.5851 5 .0539 - -  - -  
0.1 4 .5915# 4 .5932  5 .0612 - -  - -  
0.2 4 .4956#  4 .6219  5 .0864 - -  - -  
0.3 4 .4873#  4 .6890  5 .1415 - -  - -  
0.4 4 . 7 9 3 5 t  4 .8494  5 .2618 - -  - -  
0.5 4 . 9 8 3 9 t  5 .2463 5.5395 - -  - -  

#Denotes an asymptotic three-dimensional elasticity solution. 
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with the use of such theories and the benefits of utilizing the present shell theory for the 
analysis of thick shells. The results shown in the tables demonstrate highly accurate fre- 
quency predictions obtained with the present higher-order theory in the range of long 
and short cylinders examined. The results are also consistent and demonstrate that, with 
increasing 2h/a and 2h/L ratios, CST shows the greatest inaccuracy and, as noted previously, 
it does not permit solutions for the thickness-shear and thickness-stretch modes. The FSDT, 
in which thickness-stretch modes are intrinsicallrv_suppressed and which makes use of 
Mindlin s shear correction factors, k, = k2 = zc/x/12, demonstrates a stronger performance 
in maintaining accuracy with increasing thickness/radius and thickness/wavelength ratios. 
Without the inclusion of transverse correction factors, the HOT* results are less accurate 
than the HOT formulation; it is noteworthy, however, that even without the shear cor- 
rection factor, HOT* provides more accurate predictions for 1)~ and f~3 than FSDT. 
The present theory, with the application of transverse correction factors, demonstrates 
exceptional performance in high thickness cylindrical shell geometries when compared with 
the exact solution. 

6. C O N C L U D I N G  R E M A R K S  

A new higher-order shell theory, which has analytic and computational advantages 
over other theories of the same order of approximation, was developed for homogeneous 

SAS 32-22-8 
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Table 5. Normalized natural frequencies for homogeneous 
cylinders (re, n) = (1, 0), 2h/a = 1.0 

orthotropic topaz 

2h/L E X A C T  H O T  H O T *  F S D T  C S T  

~ :  FlexuralMode 
0.00 0 .0000  0 .0000 0 .0000 0 .0000  0 .0000  
0.01 0 .0879 0 .0879 0 .0879 0 .0935 0 .0902  
0.1 0 .8695 0 .8692  0 .8696 0 .8886 0 .8886 
0.2 1.5040 1.5097 1.5091 1.5104 1.5109 
0.3 1.7548 1.7663 1.7614 1.7771 1.8345 
0 .4  2 .1252 2 .1367 2 .1317 2 .1489 2 .4078 
0.5 2 .6005 2 .6059 2 .6048 2.6171 3 .1944 

~2 :  Breathing mode 
0.00 1,6532 1.6519 1.6460 1.6979 1.6980 
0.01 1.6528 1.6666 1.6662 1.6975 1.6977 
0.1 1.6338 1.6471 1.6452 1.6862 1.6930 
0.2 1,8937 1.8995 1.8970 2 .0007 2 .0019 
0.3 2,6981 2 .6924  2.6991 2 .8530 2.8533 
0.4 3 ,4984 3 .4749 3.5121 3 .7704 3 .7705 
0.5 4 ,1118 4 .0659 4 .2059 4 .6976 4 .6977  

~3 :  Thickness-shear mode 
0.00 3 .2710 3 .2812 3 .3029 3.2813 
0.01 3 .2730 3.2831 3.3048 3.2833 - -  
0.1 3 .4446 3.4581 3.4813 3.4771 - -  
0.2 3 .8679 3 .8892 3.9179 3.9571 - -  
0.3 4 .3962 4 .4384  4 .4800  4 .5837 
0 .4  4 .7137  4 .9077 5 .0892 5.2902 - -  
0.5 5 .0576 5.2529 5.5615 6 .0467 - -  

~4 :  Thickness-stretch mode 
0.00 4 .9547  4.7131 5.1901 - -  - -  
0.01 4 .9548 4.7131 5.1902 - -  
0.1 4 .8939 4 .7203 5 .1970 
0.2 4 .7774  4 .7456 5 .2204 - -  - -  
0.3 4 .7170 4 .8049 5.2711 - -  ~-- 
0.4 5 .0436 5.0693 5.3873 - -  
0.5 5 .6297 5.6718 5 .7986 - -  

orthotropic shells on the basis of assumed displacements and transverse strains. The inde- 
pendently assumed transverse shear and normal strains were derived in terms of dis- 
placement variables in two basic stages: (1) by enforcing physical transverse stress con- 
ditions to be exactly satisfied on the bounding shell surfaces; and (2) by making these 
transverse strains to be least-squares compatible across the shell thickness with the cor- 
responding strains derived from the strain-displacement relations. The application of a 
three-dimensional displacement-based variational principle resulted in a 10th-order shell 
theory with associated five edge boundary conditions of the Poisson type. The theory is 
formulated in terms of an orthogonal curvilinear coordinate system and thus permits the 
analysis of various types of shells including, but not limited to, cylindrical, spherical and 
conical. 

The analytic predictions of the shell theory for the natural frequencies of free vibration 
of isotropic and orthotropic cylindrical shells were found to be in close agreement with the 
three-dimensional elasticity solutions. In addition to the modes of deformation available 
in the first-order shear-deformable theory, the present theory incorporates two lowest 
thickness-stretch modes. The ability to model these thickness-stretch modes may be par- 
ticularly important for laminated polymer-matrix composite shells, where the excitation of 
thickness-stretch modes is often associated with delamination initiation and failure. 
Naturally, the proposed theory provides a basic foundation for the development of a 
laminated shell theory. 

The proposed theory may be found to be particularly useful for application to finite 
element analysis. The key appealing features are the low-order continuity requirements for 
the kinematic variables of the theory and the standard engineering boundary conditions. 
These characteristics permit formulations of simple and effective shell elements that are 
fully compatible with standard finite element software. The utility of such finite elements 
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has  r ecen t ly  been  d e m o n s t r a t e d  wi th  its p r e d e c e s s o r  p l a t e  theory ,  o n  w h i c h  basis  an  ef fec t ive  

f ace ted  shell  e l e m e n t  has  been  d e v e l o p e d  a n d  used  in g e n e r a l - p u r p o s e  f ini te  e l e m e n t  codes .  
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C. B., 

A P P E N D I X  A:  D E F I N I T I O N S  O F  s~ 

The coefficients s~ (i = 1,2 . . . . .  10) in eqn (22) are defined as follows : 

si = t~2a~+t~lbi (i v ~ 3,8) 

S 3 = /~2a3 +/51b3 + 1 

ss =/~2a8 +/~l bs + P3, 

where 

P, = P : ( ~ ) / h  

132 = [P~ (3) + 14P3(O]/85h 

/~3 = [168P, (~) -28P3(O]h/85 

and P~(~) (i = 1, 2, 3) are the Legendre polynomials  

P, (~) = 

P2(~) = (3~-'-- 1)/2 

P3 (O = ~(5~ 2 - 3)/2. 

The aj coefficients are defined as 

a, = h2/R,(C~3/C33)Kff2 (i = 1.2) 

a3 = h3/Rt (I~,/R, --Kflh)(C,3/C,3)/2+h3/R2(I~2/R2 -K4/h)(C23/C33)/2 

0 3 + ,  = (C~6 /C3) /a ,  

as+, = h2 / R , (hKi -  R, K2 +,)(C,3/C~3)/2 

as = h" /R, (4K~/5R, - 2t(3/h)(C,3/C33)/2 + h4 /R:(4K2/5R2 -21~4/h)(C2flC33)/2 

as+ i = ( C 3 6 / C i 3 ) / 6 5 + i ,  

where the Ke a n d / ~  are defined as follows : 

Ki = l/(L~+) 2 + I/(L.)'- 

g ,  = l/(L,+ ) 2 - 1 / ( L  ) "- 

K2+i = l/L3 + 1/Li  

/~2+~ = 1/L7 - l / L . .  

To obtain b ,  replace Ki with/~i  and/~i  with K~ in ai (i = 1.2.3 . . . . .  10). 

A P P E N D I X  B: S H E L L  STRESS R E S U L T A N T S  

NI = h  (~ l+6 , s lL i )L 2d~  
I 

f' 
N 2  = h (62 + 6 . s 2 L 2 ) L I  d~ 

I 

N, = h [(61/Ri +tr2Ll/L2R2)h~ +a,,s3Li]L2 d~ 
I 

compiler),  
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hf. = h 
I 

[(~1/~,+~zL,IL,~,)h~(5*-1/5)+u~,s,L,]L,d~ 
-I 

APPENDIX C: RESULTANTS OF PRESCRIBED EDGE TRACTIONS 
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i' 
0,-, = h  ¢ , . (~- , -  1/5)L_, d~ = 0 

- I 

i' 0-,, = h f-,,,Ll~d~ = 0 
I 

i' 
02-, = h f~,,(~-, - I/5)L, d~ = 0 

I 

The last four terms vanish identically, according to the natural boundary conditions of eqn (33a), which 
necessitate the prescribed shear tractions of  the form shown by eqn (34). 

APPENDIX D:  SHELL CONSTITUTIVE MATRICES 

The components  of  the shell theory constitutive matrices, eqn (30), are given as 

f, A~I = h [CII/L~ +Ci3sl +(CI3/LI +C33sl)slLi]L2d~ 

f Ai2 = h [C,2/L, +Cj3s-,+(C23/LI +C33s2)s,LI]L2d~ 
I 

f, A,3 =k3h [Ctth~/L~Rt+C,2h~/L2R2+C~3s3+(C,3h(/L~R~+C23h~/L2R2+C33s3)s~L~lL2d~_ 
1 

Ai4 =h  [CI3s4+CI6/LI +(C33s4+C~6/LI)stLk]L2d~ 
I 

AI5 = h [CI3ss+Ct6/L2+(C~3ss+C36/L2)sILt]L2d~ 
I 

.422 =h [C,02/L2+C-,3s-,+(C23/L2+C33s2)s2L2]Ltd~ 
I 

A23 =k3h [CI2h~/LIRI+C22h~/L~_R2+C23s3+(CI3h~/LIRI+C23h~/L2R2+C33s3)s-,Lz]LId~ 
I 

A24 =h [C-,3s4+C26/LI+(C33s4+C36/LI)s-,L-,]LIdc 
I 

A-,5 = h [C23ss + C26/L-, + (Cs3s5 + Cse/L-,)s-,L-,]L~ d~ 
I 

A33 =k~ll [(C,~h~/LLR~+C,2h~/L2R2+C,3s3)h~/R,+(C,-,h~/L,R,+C2-,h~/L2R2+C-,~s3)h~L,/R,L-, 
I 

+ (C, 3h~/Lt R~ + C23h(/L2R2 + C33s3)s3LI ]L2 d~ 

I' A34 =k3h [(C,3s4+Ct6/L,)h~/R, +(C-,3s4 +C-,~/L,)h~L,/L2R-,+(C33s4 +C36/L,)s3L,)]L-,d~ 
-.I I' A35 =k3h [(CI3ss+C,6/L-,)h~/R,+(C23ss+C26/L2)h~LI/L2R-,+(C33ss+C36/L,)s~Lt)lL2d~ 

I 

A44 = h [C66/LI +(C33s4+2C36/LI)s4LI]L-, d~ 
I 

A45 = h [C 66 /L2  + C 3 6 s s  + ( C 3 3 s s  + C 3 6 / L 2 ) s 4 L I ] L 2  d ~  
i 

A55 = h [C66/L-, +(C33s5 +2C36/L-,)ssL-,]L~ d{ 
I 

B~ = h i  t [CI~h~/LI +CI3s6 +(CI3h~/LI +C33s6)s~L~lL-,d~ 
I 
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f'_ BI2 = h [CI2h~/L2 q-CI3s7 +(C23h~/L2 + C33s7)slLI]L2 d ~ 
I 

Bl~ =k4h {Cl,h2(~2-1/5)/LiR~+C,2h2(~2-1/5)/L2R2+Ci3ss+[Cj3h2(~2-1/5)/LiRt 
I 

+ C2~h2 (~2 _ 1/5)/L2 R2 + C33ss]s, L~ }L2 d~ 

B~4 = h [C,~s9+C~6h~/L, +(C33sg+C~6h~/L,)s,L,lL2d~ 
I 

Bi5 = h  [C13slo+Ci6h~/L2+(C33slo+C36h~/L2)slLt]L~d~ 
I 

B21 = h [Ci2h~/Ll +C23s6 +(G3h~/Lt +C33s6)s2L2]Lt d~ 
I 

B22 = h [C22h~/L2 + C23s7 + (C23h~/L2 + C33s7)s2L2]L, d~ 
I 

f'_ B23 =k4h {C ,2h : (~2-1 /5 ) /L ,R ,+C22h2(~- l /5 ) /L :R~+C~ss+[C,3h2(~- I /5 ) /L ,R ,  
I 

+ C23h ~ (~  - 1/5)/L~R~ + C~3s~]s~L2}L~ d~ 

B~ = h [C~3s9 + C~h~/L~ + (C3~s9 + C36h~/L~ )s~L~IL~ d~ 
I 

B2~ = h [C~3s~o + C~6h~/L~ + (C33s~0 + C36h~/L~)s2L2]L~ d~ 
I 

I' 
B3, = k~h [(C, ,h~/L~ +C,~s6)h~/R, +(C,~h~/L, +C2~s6)h~L~/L~R~ +(C,~h~/L, +C3~s6)s~L,IL~ d~ 

1 

f, B32 =k3h [(C,2h~/L~+C~s7)h~/R~+(C~h~/L~+C~aST)h~L~/L~R~+(C~h~/L2 
I 

+ C~3ST)S3 L~ ]L~ d~ 

f, B33 =k3k~h {[C~,h'-(~-I /5) /L,R,+C,~h~(~2-1/5)/L~R~+C,3sslh~/R,+[C~2h~(~-I /5) /L~R,  
I 

+C2~h~(~ 2 - I/5)/L,_R~ + C:~sslh~L~/L~R~ + [C~3h2(~ 2 - 1/5)/L~ R~ +C2.~h~(~ ~ - 1/5)/L~R~ 

+ C3~s~ls, L, }L2 d~ 

f, B34 = k a h  [(C,3sg+C~6h~/L~)h~/RI+(C~3sg+C26h~/L~)h~LI/L2Rz+(C~3sg+C36h~/L~)s3L~]L2d~ 
- I  

B35 = k3h [(C 3s o+C 6h~/L:)h¢/R +(Cz3s~o+C26h¢/L:)h~L~/L2R2+(C~3s~o+Ca.h~/L2)s3L~lL2d~ 
I 

B4~ = h [(C~3h~/L~ -J-C33s6)s4L , d - C ~ 6 h ~ / t  ~ -~-C36s61L 2 d~ 
I 

B 4 ~  = h [(C~3h~/L2 q-  C 3 3 S 7 ) $ 4 L ,  q -  C 2 6 h ~ / t ~  -I- C 3 6 s T ] L  2 d ~  
I 

B~3 = k~h {[C,3h:(~ ~ -  I/5)/L,R, +C~3h2(~ ~ -I /5)/L~R~ +C.ss ls~L,  +C~h~(~ ~ - I /5) /L ,R~ 
1 

+ C26h~(~: -- I/5)/L~R~ + C~6ss}L~ d~ 

B44 = h [C36s9 + C66h~/Li + (C33s9 -J- C36h~/tl )s4L~ ]L2 d~ 
I 

f_ B4~ = h  [C~6s,o+C66h~/L~+(C~s~o+C~6h~/L2)s4Lt]L~d~ 
I 

3257 
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Bs, = h [(C,3h~/L, +C33s6)s, L2 +C,6h~/L, +C36s6]L, d~ 
- I  

f, B,2 = h [(C23h~/L2 + C33ST)SsL2 + C26h~/La + C~6s71L, d~ 
I 

s .3  = k~h I '  {[C, 3h~(~ ~ - 1/5)/L,  R, + C~h: (¢~  - I /5) /L~R~ + C . s d s . L ~  + C,6h~(~ ~ - 1/5)/L,  RI 
J-  I 

+ C26h2(~ 2 - I/5)/L2R2 + C36s~}LI d~ 

B54 = h [C36s9 q- C66h~/Li  + (C33s  9 --1- C36h~/L, )ssL2]L~ d~ 
i 

I' 
B55 = h [C36slo + C66h~/L2 + ( C 3 3 s l o  + C~6h~ /L2 ) s sL2]L  I d~ 

I 

D,, = h  [(C,,h~/L,+C,3s6)h~+(C,3h~/L~+C33s~)s6L,]L2d~ 
I 

i Dr2 = h [(CI2h~/L2+CI3s7)h~+(C23h~/La+C33sT)s6Lj]L2 d~ 
I 

i D,3 =k4h {[C, ,h2(~2-1 /5) /L ,R ,+C,2h2(C ' - I /5 ) /L ,R2+C,3s~]h~+[C,3h2(~2-1 /5) /L ,R ,  
I 

+ C23h2(~ 2 -- 1/5)/L2R2 + C33ss]S6Ll }L2 d~ 

f' Dr4 = h [(CI3s9+CI6h~/LI)h~+(C~3sg+C36h~/L,)s6LI]L~d~ 
I 

D,,  = h [(C,3s,o+C,6h~/L~)h~+(C33s~o+C~gh~/L~)s6L,]L2d~ 
I 

I' D?2 = h [(C~2h~/L;+C,3sT)h~+(C,3h~/L~+C~3ST)STL~]L~ d~ 
I 

f' D~3 =k~h { [ C , ~ h ~ ( ~ - I / 5 ) / L , R , + C ~ 2 h ~ ( ~ - I / 5 ) / L ~ R 2 + C ~ s ~ ] h ~ + [ C , 3 h ~ ( ~ : - I / 5 ) / L , R ,  
- I  

+ C~3h~(~ ~ - I/5)/L~R, + C3~s~ls7L~}L, d~ 

D ~  = h [(C23s9 +C26h~/L~)h~ + (C33s~ + C36h~/L~)s7L~]L~ d~ 
I 

I' D:~ = h [(C23slo +C26h~/L2)h~ +(C33slo +C~6h~/L2)sTL2]L I d~ 
I 

I' D3~ =k~h {[C,~h2(~- I /5 ) /L ,R~  + C , J ~ ( ~ - I / 5 ) / L 2 R ~ + C , 3 s a ] h ~ ( ~ - I / 5 ) / R ~  
- I  

+ [C~h~(~ ~ - I/5)/L, R, + C2~h~(~ ~ - I/5)/L~R2 + C~3s~]h~L,/L2R2 

+ [C~3h2 (~ ~ - 1/5)/L~ R~ + C~3h"(C- - 1/5)/L~R~ + C33s~]s~Lt }L2 d~ 

f' D34 =k4h [(C,3s9+C,6h~/L,)h2(?.~-I/5)/R,+(C~3s9+C~6h~/L,)h2~Lt/L2R~ 
- I  

+ (C33s9 -~- C36h¢/L~ )ssLI]L~ de 

f' D35 = k4h [(Ci3slo+Ci6h~/L2)h:~(~ ~ - I/5)/R~ +(C23sIo+C26h~/L~)h~L~/L2R2 
- I  

+ (C33s~o + C36h~/L2)ssL~ ]L2 d¢ 

f' I 
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D45 = h f~,  [(C36sj0 + C66h~/L2)h~+ (Cj3s,o + C36h~/L2)sgL,]L2 d~ 

D55 = h f l  t [(C36slo + C66h~/L2)h~ + (C33st o + C36h~/L2)sloL2]LI de 

G44 = k~h(5/4) 2 f~, (I -~:)2C44L,/L2d~ 

G54 = k'k2h(5/4)2 I~, (I -~2)2C4~ d~ 

Gs~ = k~h(5/4) 2 Ill (I-~)2C55L2/LI d~ 

Note the symmetry of the components : A. = A/~. D u = D:~ and G~ = G:. 
The transverse correction factors, as determined in section 3. are k~ = k~ = n/~/-~.k~ = n/~:~, and 

k4 = r~/,/q7/252. 

APPENDIX E: COEFFICIENTS OF STIFFNESS AND MASS MATRICES K~y I AND Mcyl 

The stiffness matrix coefficients, eqn (38), are given by 

Kll = A2:t2 + Assn2/a 2 

Ki2 = (A~2 +A54)cm/a 

g13 = Aj2ct/a 

KI4 --- (BI2 +B54)ctn/a 

Kt 5 = Bll ct 2 + B55n2/a 2 

KI6 = Ai30t/h 

KIT = Bj3~/h 2 

K22 --- A44~ 2 + (A22n: + G44)/a 2 

K23 = (A22 +G44)n/a 2 

K24 = B44~ 2 +B22n2/a 2 -G44/a 

K2s = (B45 + Bzl)~n/a 

K26 = A23n/ha 

K27 = B23n/h2a 

K33 = G55~ 2 +G44n2/a 2 +A2:/a 2 

K3a = (B22/a-G44)n 

K35 = (B21/a-G55)ot 

K36 = A23/ha 

K37 = B23/h2a 

K44 = D44~t 2 + D22n2/a 2 +G44 

K45 = (D45 +D2Ocm/a 

/(46 = B32n/ha 

K47 = D23n/h2a 

K55 = Di : t  2 + D55n2/a 2 +G55 

K56 = B31~/h 

K~7 = Di30t/h ~ 
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K66 = A33/h'- 

K67 = B33/h 3 

K77 = D33h 4. 

T h e  n o n - v a n i s h i n g  m a s s  m a t r i x  coeff icients ,  eqn  (38),  a r e  g iven b y  

MI I = mo 

Mi5 = hml 

M22 = mo 

M24 = M~5 

M33 = / n  o 

M36 = m~ 

M37 = - m o / 5 + m ,  

M44 = h2m: 

M55 = M44 

M66 = m 2 

M67 = - m l / 5 + m 3  

M77 = m o / 2 5 -  2m2/5 + m4, 

w h e r e  the  iner t ia l  coeff icients ,  m,,(n = 0, l . . . . .  4),  a re  def ined  as 

m,, = ph{ [ l  - - ( -  l ) " + ' ] / ( n  + 1 ) +  [I - - ( - -  I ) " + 2 ] ( l / R ,  + I /R2)h/(n+2)+[1 - ( -  l)"+3]h2/R, R2(n+3)}, 

N o t e :  K i / =  K/~ a n d  Mi/= M/i. 


